Communicating research to industry: How to write a great project summary
In recent years many companies have expanded their open
innovation initiatives, with universities capturing the spotlight as an
invaluable source of new technologies and game-changing breakthroughs. However,
as part of a global web of science and innovation, it can be difficult for
academics to get their research in front of the right people in industry.
Attracting interest from relevant research and development (R&D)
professionals, who often have limited time to evaluate each academic discovery
that lands on their desk, is a challenge. Effectively communicating science to
industry is crucial to the successful commercialization of university research.
What
information do R&D teams look for in a project summary?
In most cases, translating an academic breakthrough into
a new product, medicine or technological solution can’t be done without
collaborating with industry. In universities, the office of technology transfer
(TTO) or research commercialization (ORC) will be tasked with the
responsibility for making sure the right people in industry are alerted to
relevant discoveries.
Getting the attention of R&D professionals involves
cleverly packaging up complex scientific ideas and inventions into
easily-digestible summaries. These project summaries, also known as technology disclosures,
are designed so that an R&D professional can conduct a quick initial review
to assess first, whether it’s relevant to their current research priorities,
and then second, if it presents a unique solution to one of their R&D
requirements.
To better understand what information is essential to
include in a technology disclosure, in our annual survey we asked the R&D
professionals who use IN-PART: ‘What
is the most valuable piece of information for your assessments of whether a
breakthrough or new technology from academia is relevant to your company?’.
Three key elements came up in almost all of the responses we received (a full
summary of the responses is included below):
Stage of development, or technology readiness level (TRL)
Explicitly stating the project’s current stage of development gives R&D teams an indication of how much — if any — work is required to incorporate it into the company’s R&D pipeline. It also allows the R&D team to assess whether they have the capacity to invest in testing/validation, prototyping, and further development.
Collaborating with a university requires a significant
investment of time and resources for a company. Given the right opportunity,
it’s worth the investment, but an academic breakthrough might be dismissed
outright without the essential information about its stage of development.
Potential applications
For an invention to progress to being an innovation it
has to be applied to create, or be implemented into, a product that holds
market appeal. This potential is key to the decisions taken by R&D teams to
in-license a technology, or to collaborate with the university to further
develop the innovation.
Although academic researchers might be looking for
companies to designate their own specific applications for their breakthrough,
we have found that R&D teams like to see some sort of vision for the
technology in its final form, with suggestions about how the technology might
be used in those applications.
Cost-benefit and market analysis
What makes a new technology or breakthrough advantageous
over an existing one? We learnt that providing an indication of the competitive
landscape is essential to make it clear how a new breakthrough offers technical
benefits over currently available technologies. In addition, giving a brief,
informed indication of the market demand and economic value of a technology
provides an incentive for R&D professionals to take the time to evaluate an
opportunity further. Also, R&D teams can sometimes be willing to shift
focus from their core interests if it’s clear for them to see the potential
economic value of the technology for their company.
The requirement to outline the benefits of a new
technology over an existing one, and to provide an economic analysis, was also
highlighted in a blog that we published earlier this year: ‘How do R&D teams evaluate
new opportunities?’.
Ronan Bellabarba, Technology Manager at Johnson Matthey, an
industry leader in speciality chemicals and sustainable technologies, outlined
this outlook, saying that:
“There are certain critical points of
information which are necessary to establish relevance. These are obviously the
fit with my company’s existing, or potential, technology and markets, but also
what problem does the technology solve, and how is this better than existing
solutions?”
“The critical point for an initial
evaluation is to have some kind of economic comparison against the leading
competing solution to that problem. The ‘hook’ that gets a company interested
is often presented as technical but needs to be commercial; it also has to be
credible. These calculations are not difficult but increase the impact by
orders of magnitude.”
What else
does industry want to know?
As the responses to our survey show (below), there are
other pieces of information that are essential for R&D teams in industry.
Making it clear exactly what the technology, project or breakthrough is, with a
concise and informative title, and a description that ticks all the boxes means
that R&D professionals can make a clear decision about its relevance to
their work. This also helps IN-PART’s research team to more accurately match
the breakthrough to the widest range of companies with aligned R&D
interests.
R&D professionals also value seeing key technical
details and data that demonstrate the feasibility or proof-of-concept of a
technology. Including the intellectual property (IP) status and links to any
patents can make the difference between the company taking the time to look
into an opportunity and immediate dismissal.
Top tips for
effectively communicating science to industry
Getting across all this information in a succinct,
simple and engaging way for a global audience that might include
non-specialists is not a small ask, but there are steps that can be taken to
increase the chances of success. Briefly outlining the who, what, where, why, and how in the
introduction is an effective way to cover much of the essential information
required, followed by an expansion on these points through the rest of the
technology disclosure.
Creating a story is a proven way to optimize
engagement with scientific research. Writing about why the researchers have been working to
develop a much-needed solution, and how they’ve been doing that, highlights why
it’s also worth the time of passing R&D professionals.
If there’s an analogy that can be found with a global
reference point, this can also cut down the words needed to describe a
concept and quickly
get across the gist of a complex idea. For example, you might describe a new
drug delivery system for a tumour-targeting immunotherapy drug as a trojan
horse to fight cancer, or you might summarise the AI-algorithms behind a
reasoning engine for massive datasets as a Google Maps for decision making.
Adding links to further information is useful for
keeping the summary short. The adage that a picture speaks a thousand words is
often true. A video can say even more.
Finally, it’s important to keep in mind that it’s not necessary
(and often unfeasible) to try and provide every detail about a project in
400–600 word summary. Providing the minimum essential information to capture
enough interest from an R&D professional to ask further questions is a
smart way of encouraging a request for more information that opens the door to
a productive discussion.
Examples of successful technology disclosures on IN-PART
The following innovations are a select handful from the
230+ universities and research institutes using IN-PART that have received high
levels of engagement from industry. They’re great examples of different
approaches to providing a succinct summary of a project that successfully
incorporates why the research is needed, how that’s been achieved, and what its
future potential could be.
Exactly what the technology is and how it works has been
clearly stated, and the all-important potential applications are outlined.
Additionally, figures to illustrate key data, and links to further information
such as publications and patents are included:
- Coating Mild Steel with Graphene for Corrosion
Protection (Monash University) - Anti-CCR6 mAb for Autoimmune Diseases (Monash
University) - Live-Attenuated Salmonella enterica Vaccine (North
Carolina State University) - Ultra-high Temperature Ceramics (University
of Birmingham)
Header image: Melany Rochester / Unsplash
In-line image #1: Alessandro Vallainc / Unsplash
In-line image #2: Thomas Lefebvre / Unsplash
The article was originally published on Medium on 22 October 2019, and reposted in the UIIN blog under a full permission granted by the author, Sharon Gill, and the editor, Alex Stockham.